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Numerical analyses of the stability of a stratified two-dimensional Kelvin-Helmholtz billow against

three dimensional disturbances provide a theoretical means of identifying the primary mechanism(s)

that induce transition to turbulence. We identify, through fully resolved three-dimensional numerical

simulations, secondary modes of instability which have been suggested by recent observations to be

responsible for this transition. Our analyses lead us to two primary conclusions. First, as the Reynolds

number is increased at a fixed stratification level, the vortex pairing process may be entirely suppressed

by the rapid growth of three-dimensional secondary instabilities. Second, the new transition mecha-

nisms identified herein have significant implications for the efficiency of mixing in the turbulent flow

that develops subsequent to saturation of the secondary instabilities. VC 2011 American Institute of
Physics. [doi:10.1063/1.3651269]

Stratified free shear flows are known to be susceptible to

primary instabilities which are most often inherently two-

dimensional (2D). One of the most commonly observed of

these instabilities is the Kelvin-Helmholtz (KH) instability.

The primary KH waves are susceptible to 3D secondary insta-

bilities which facilitate a rapid transition to turbulence.

Among such secondary instabilities are the pairing instabil-

ity,1 the shear aligned convective instability (SCI) which

occurs in the statically unstable regions inside the vortex

cores of the train of KH billows,2 the secondary shear insta-

bility (SSI) of the vorticity layer (braid) connecting the vortex

cores in the train of KH billows,3–5 and the stagnation point

instability (SPI) which is a phase-locked instability local to

the braid stagnation point.1,6 Although formation of KH bil-

lows at high Reynolds numbers have long been observed in

the atmosphere and in the oceanic thermocline,7 recent obser-

vations have revealed trains of KH billows forming in the

deep ocean8 and in estuarine shear zones.9 These studies have

reported the observation of enhanced mixing in the braid of

the KH billows due to secondary instabilities which seem to

be of shear type, therefore suggesting that the SCI of Klaas-

sen and Peltier (1985) might not be the sole mechanism re-

sponsible for turbulent collapse. Our recent theoretical

analyses6 have revealed secondary instabilities localized to

the braid in addition to the convective instability inside the

cores. It is our goal in this work to investigate the emergence

of different secondary instabilities, their interactions, and

their implications for irreversible turbulent mixing.

We consider evolution of a stratified shear layer with

initial background profiles of �UðzÞ ¼ U0 tanhðz=hÞ and

�qðzÞ ¼ qa � q0 tanhðRz=hÞ, where U0 and q0 are reference ve-

locity and density, and where h is half the shear layer thickness,

which is chosen to be 1.1 based on laboratory experimental

observations in which the working fluid is salt stratified water.

We also consider the equations of motion, incompressi-

bility, and continuity in dimensionless form similar to Caul-

field and Peltier10 (hereafter referred to as CP00). The

Reynolds number is defined by Re¼U0h/� where � is the ki-

nematic viscosity and the Prandtl number by Pr¼ �/j where

j is the thermal diffusivity. The stratification at the center of

the shear layer is measured by Ri0, the value of the gradient

Richardson number RiðzÞ ¼ N2=ðd �U=dzÞ2 (where N is the

buoyancy frequency) at the center line.

Direct numerical simulations (DNS) of the governing

equations are employed to ensure that all relevant scales of

motion are resolved. The pseudo-spectral algorithm we employ

is that described in detail in Taylor.11 Periodic boundary condi-

tions are applied in the streamwise and cross-streamwise direc-

tions, while second-order energy-conserving finite differences

are used in the vertical direction. Discrete conservation of

mass, momentum, and energy are ensured by the numerical

scheme. In the streamwise direction, the length of the numeri-

cal domain is set equal to two wavelengths of the most unsta-

ble mode of linear inviscid theory (i.e., 2� 14.27) to allow the

pairing instability to grow. The vertical extent of the computa-

tional domain is chosen to be sufficiently large to ensure that

the flow remains unaffected by the horizontal boundaries (it is

set to 30h where h is half the shear layer depth).

The flow field is initialized by the addition of a small per-

turbation in the form of the most unstable KH mode to the

background velocity and density fields. To ensure that the ini-

tialization does not have any significant impact on the results,

the kinetic energy associated with the initial disturbance is

chosen to be only 10�5 times that of the background shear

flow and limited to a vertical range of 5 h from the center of

the shear layer. To allow for an unbiased initiation of any sec-

ondary instability, small amplitude white noise is added to the

velocity and density fields. Boundary conditions are free-slip

impermeable on velocity components and zero density flux at

the horizontal boundaries of the domain. Resolution studies

and flow diagnostic tools were employed to ensure the validity

and accuracy of each simulation. In particular, it was ensured

that the evolution equations for the total kinetic energy and

the inherently three-dimensional perturbation kinetic energy

(Eqs. 2.20 and 2.23 from CP00) were satisfied for all simula-

tions. Specific information regarding the 3D numerical simu-

lations discussed in this paper is provided in Table I. For the

Re< 4000 cases, the experiments were repeated (but are not
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discussed herein) with twice and triple the spanwise extents

(with the resolution also increased accordingly) to ensure that

the fastest growing modes of the secondary instabilities (which

will be discussed in the following paragraph) are resolved.

Figure 1 shows the results of our 3D DNS calculations for

Reynolds numbers of 750 and 1000 and for various Richardson

numbers. For small to intermediate values of Ri0, the pairing

instability is the first mode to emerge followed by formation of

convective rolls in the unstable regions inside the cores. For

Re¼ 750, Ri0¼ 0.085, these vortices grow considerably during

the development of the pairing process and lead to three-

dimensionalization of the flow and transition to turbulence. The

large scale structure of the flow, however, follows that imposed

by the pairing process. For Ri0¼ 0.12, the SCI grows to high

amplitude early in the flow evolution. The interaction between

shear-aligned vortex rolls breaks the flow down to turbulence,

but a moderate form of pairing still ensues in the turbulent

phase. These simulations are different from those of CP00 in

that they allow for the pairing process (by including two wave-

lengths of the primary KH wave in the flow domain). In agree-

ment with several experimental studies, our results show that

vortex pairing is delayed with an increase in stratification. How-

ever, our results also show that this delay allows for large ampli-

tude growth of 3D instabilities which break the flow down to

turbulence, diminishing or (as will be shown for higher Re) sup-

pressing the pairing process entirely. The same is true for a

slightly higher Re¼ 1000 (at Ri0¼ 0.12), where emergence of

SCI rolls leads to a rapid transition prior to the onset of pairing.

At Re¼ 1000, there still exists a tendency for an upscale energy

transfer, and pairing occurs in the turbulent phase of the flow as

shown in the last panel of Figure 1. This turbulent-pairing indu-

ces far less vertical displacement in the shear layer (compared to

the pre-turbulent pairing), and it has a much smaller influence

on the energy exchange between the KH wave and the back-

ground flow and on irreversible mixing as will be shown. Analy-

sis of a flow with Re¼ 2000, Ri0¼ 0.12 revealed similarity to

the Re¼ 1000 case and hence is not presented.

Once the Reynolds number is sufficiently high, the transi-

tion to turbulence occurs through a series of different processes.

As shown in the streamwise vorticity plot for Re¼ 4000 in

Figures 2(a) and 2(b), the first secondary mode of instability to

grow is the SPI. The growth of this mode, which extracts almost

all of its energy from the stain field as discussed in MP1, gives

rise to a phase-locked vortex at the braid stagnation point.

Figure 2(a) shows that it is both the SPI and SCI and their inter-

action with one another which introduces three-dimensionality

into the flow, leading to a rapid turbulent collapse with no trace

of a vortex pairing mediated upscale cascade in the preturbulent

or early stages of the turbulent phase.

As we increase the Reynolds number further, shear-

induced vortices form on the braid in agreement with

theoretical predictions3,4,6 and observations.9 Figure 2 includes

plots of spanwise and streamwise vorticity isosurfaces for

Re¼ 8000. As expected, SSI evolves at early stages of flow

evolution (panel (c)). However, the SPI and SCI still emerge,

grow rapidly, and lead to rapid breakup of the flow into turbu-

lence which initiates at the corners of the cores (due to influ-

ence of SPI on the cores) as shown in frames (d) of the figure.

A simulation was also performed for Re¼ 6000, and the result-

ing flow (not shown here) bore qualitative similarities to both

of the Re¼ 4000 and Re¼ 8000 cases. The transport of the vor-

tices formed on the braid to the periphery of the cores by the

braid velocity field plays an important role in enhancing turbu-

lent mixing inside the vortex cores.

As discussed in MP1, SSI and SPI are of different ori-

gins (the former is shear-driven and the latter strain-driven).

A means of distinguishing between the two modes is to note

that SPI is phase-locked, while SSI vortices are advected by

the braid velocity. Moreover, stability analyses of MP1

TABLE I. Details of the numerical simulations.

Re Ri0 Pr Lx Ly Lz Nx Ny Nz

750 0.05 1 28.56 4 30 320 64 600

750 0.085 1 28.56 4 30 320 64 600

750 0.12 1 28.56 4 30 512 96 800

1000 0.12 1 28.54 3 30 768 96 800

4000 0.12 1 28.54 3 30 1024 128 1216

6000 0.12 1 28.54 3 30 1024 128 1216

8000 0.12 1 28.54 3 30 1024 128 1216

FIG. 1. (Color) Spanwise vorticity isosurface of xz¼ 0.72 in green and

streamwise vorticity isosurfaces of xx¼ 0.2 (red) and xx¼ � 0.2 (blue).
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revealed that SPI is a highly 3D mode, whereas SSI is primarily

a 2D mode (which can also be of small spanwise wavenum-

bers). To investigate predictions of MP1, we have used fast

Fourier transformation to obtain a discretized spectral represen-

tation of the streamwise vorticity (following closely analyses of

CP00). The decomposition is performed at a time within the

short period of rapid saturation of 3D instabilities (similar to

cases considered in CP00) and is focused on two regions of the

flow field: the vortex core and the braid. The results are shown

in Figure 3. For Re¼ 1000 and Ri0¼ 0.12, the power spectrum

peaks at a spanwise wavenumber of �6 which is in excellent

agreement with theoretical prediction of MP1. The braid region

is also dominated by the same wavenumber due to extension of

SCI induced vortices to the braid (as shown in Figure 1(d)). For

Re¼ 4000 and Ri0¼ 0.12, the core is dominated by SCI as

shown in Figure 2(b). The braid region, however, hosts a

phase-locked SPI vortex formed at the stagnation point (Figure

2(a)) which according to the clear peak of the braid power spec-

trum has a spanwise wavenumber of �4. For Re¼ 8000 and

Ri0¼ 0.12, the core remains dominated by SCI as shown in

Figure 2(d). The braid region, however, hosts both the SPI

and the shear driven SSI vortices as shown in Figure 2(c).

The corresponding power spectrum shows that the long wave

scales (d! 0) are energized which is due to formation of 2D

SSI vortices. The SPI also evolves for this case as shown by

the arrow in Figure 2(c) and it has a wavelength of 7. Com-

parison between the power spectrum of the core and braid

regions for the three cases in Figure 3 illustrates two points

which are both in agreement with findings of MP1: (i) the

scales of SCI and SPI decrease with Re and at sufficiently

high Re, both modes become capable of injecting energy into

a range of small scales; (ii) long wavelengths (small d) only

become energized once 2D SSI vortices form on the braid.

To consider the influence of the secondary instability

mechanisms responsible for transition to turbulence on the effi-

ciency of irreversible mixing in free shear layers, we closely

follow the analysis of CP00 (Ref. 10). We define the irreversi-

ble mixing rateM as

M¼ dPB

dt
�Dp; (1)

where PB is the background potential energy and Dp is the

rate at which the potential energy of a statically stable

density distribution would increase in the absence of macro-

scopic fluid motion through conversion of internal energy

FIG. 2. (Color) Same as Figure 1. (a, b) for Re¼ 4000, Ri0¼ 0.12 at t¼ 73;

(c) for Re¼ 8000, Ri0¼ 0.12 at t¼ 67. Arrows point to the phased-locked

SPI on the braid.

FIG. 3. (Color online) Variation of spanwise power spectrum density P(d)

(as defined in Eq. (6.5) of CP00) with the spanwise wavenumber d. Solid

and dashed lines correspond to Fourier decomposition (with resolution of

128) of the core and the braid regions, respectively.
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into potential energy. PB is the minimum potential energy

that the flow can attain; it is the potential energy of the flow

if it were allowed to come to rest adiabatically. This energy

is inaccessible to stirring and any increase in it is due to irre-

versible mixing (as expressed by Eq. (1)).10,12,13

Once M is calculated from Eq. (1), an instantaneous

mixing efficiency can be defined as the ratio of kinetic energy

lost by the fluid due to mixing to losses of kinetic energy

owing to both irreversible mixing and viscous dissipation,

Ei ¼
M
Mþ � ; (2)

where � the viscous dissipation.

Figure 4(a) shows the time evolution of Ei for several of the

cases discussed. For all cases, the first peak represents laminar

rolling up of the vorticity cores. During this preturbulent phase

of flow evolution, instantaneous mixing is very large because of

low viscous dissipation. After the transition to turbulence, Ei

decreases substantially due to enhanced dissipation. The second

peak in the curve for Re¼ 750, Ri0¼ 0.05 corresponds to vortex

pairing (as shown in Figure 1(a)) which increases the efficiency

by slightly suppressing 3D perturbations and thereby decreasing

dissipation. The secondary peak for the Re¼ 750, Ri0¼ 0.12

case is less apparent compared to Re¼ 750, Ri0¼ 0.05 because

of the rapid growth of 3D instabilities due to delay of the pairing

process at higher stratification. For higher Reynolds number

cases, 3D instabilities emerge earlier in flow evolution and break

the flow down to turbulence rapidly and efficiently and suppress

the pairing process. Curves for Re¼ 1000 and 4000 in Figure

4(a) show that the upscale cascade in the turbulent phase has

very minor influence on the efficiency of mixing.

To enable direct comparison of the mixing efficiency

with observational data, we also define a post-transition cu-

mulative mixing efficiency, Epc, to account for mixing during

the turbulent phase of the flow,

Epc ¼

ðt

t�
Mðt0Þdt0

ðt

t�
Mðt0Þdt0 þ

ðt

t�
�ðt0Þdt0

; (3)

where t* is the time of onset of turbulent motion (defined as the

time during flow evolution when the 3D perturbations satu-

rate10). Panel (b) of Figure 4 illustrates the variation in Epc as a

function of Re for the numerical experiments with Ri0¼ 0.12.

At low Reynolds numbers (below 200), mixing becomes less

efficient with increase in Re. This is because emergence of 3D

secondary instabilities along with faster growth rates of the

newly emerging (SPI and SSI) and previously existing (SCI)

secondary modes significantly contribute to a rapid transition to

turbulence prior to onset of vortex pairing (which enhances the

efficiency of mixing greatly). For Re> 2000, pairing is sup-

pressed and the efficiency of mixing increases with Re due to

decrease in the length scales of 3D secondary instabilities and

the length scales of the subsequent turbulent flow. We can

expect the increase in E with Re to saturate at some value of Re
higher than the maximum value considered here (8000).

Figure 4(b) implies that the value of 0.2, which is widely

used as the efficiency of diapycnal mixing in free shear

layers, needs to be reconsidered.14–16 Variations in the mix-

ing efficiency with changes in stratification level have al-

ready been well studied at low Reynolds number and has

been reported in the observations.15
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FIG. 4. (Color) (a) Instantaneous mixing effi-

ciency, Ei and (b) post-transition cumulative

mixing efficiency, Epc as function of Re for

cases with Ri0¼ 0.12. The dashed curve is a

spline fit to the actual data points.
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